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Abstract

Tracking the movement of all individual group members in their natural environment remains a challenging
task. Using advances in computer vision and Deep Learning, we developed and tested a semi-automated in situ
tracking system to reconstruct simultaneous three-dimensional trajectories of marked individuals in social
groups of a coral-reef fish. Our system has a temporal resolution of 10s of milliseconds, allowing for multiple
30-min tracking sessions that have been repeated over weeks to months. We present the technique and illus-
trate its application for Dascyllus marginatus, a planktivorous damselfish that lives in social groups associated
with branching corals. Our technique identified all individuals 85-100% of the time, with a mean spatial error
of ~ 1.3 cm. It provides a cost-effective semi-automated tool for in situ research on movements and foraging of
individuals within small site-attached groups of animals in their natural environment.

Tracking individual animals provides the means to link
their movement to features of their biotic and abiotic environ-
ment, fostering better understanding of their ecology and
behavior (Nathan et al. 2008; Hussey et al. 2015). Existing
methods to track animals vary greatly according to the
research questions, the biology of the focal species, the proper-
ties of the environment and the available wildlife tracking
technologies. Information on simultaneous movements of
individuals within social groups of animals is fundamental to
our understanding of the mechanisms underlying the struc-
ture, dynamics, and ecological functioning of social groups
(Parrish and Hamner 1997; Couzin et al. 2002; Herbert-
Read 2016). Tools to acquire such information have been
developed mostly for animal groups in controlled experimen-
tal settings, ranging from small arenas and aquariums (Viscido
and Parrish 2004) to large farms and pastures (Sarova
et al. 2010). Such experimental systems are typically confined
to cover an area that is much smaller than the home range of
the animals in the wild, and are designed to control for the
effects of various factors that likely play an important role in
determining the movement and behavior of animals in their
natural environments. Studies of animal groups under natural
settings in the wild remain scarce, with only a few examples
of GPS tracking of whole groups of domestic pigeons (Nagy
et al. 2013) and most group members in primates (Strandburg-
Peshkin et al. 2015). Nevertheless, application of GPS tracking
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for high-resolution tracking of individual group members in
aquatic ecosystems (seas, lakes, rivers) is infeasible due to the
rapid attenuation of the GPS signals in the water.

Acoustic telemetry has been extensively used to track multiple
individuals at relatively high temporal resolution and duration in
the sea (Hussey et al. 2015; Crossin et al. 2017; Lowerre-Barbieri
et al. 2019; Thomas et al. 2019). Few systems have reached sub-
meter resolution in two and three dimensions (Cote et al. 1998;
Cooke et al. 2005; Rillahan et al. 2009; Deng et al. 2011;
Bohaboy et al. 2020), but have not yet reached the spatial preci-
sion of ~ 1 cm. Such a precision is needed to characterize the
movements and behavior of animals that live in the same loca-
tion for long periods. With the rapid advent of acoustic technol-
ogies and a dense array of multiple receivers this goal might be
achieved (Deng et al. 2011). Nevertheless, data obtained with
acoustics lacks important information that can be obtained by
cameras. These include information on tracked individuals
(e.g., feeding bites, antagonistic attacks), their dynamic environ-
ment, including disturbances and possible interactions with
non-tagged conspecifics and predators. Clearly, at present optical
techniques provide superior information on behavior and fine-
scale movements of animals (Dell et al. 2014).

Multiple cameras have long been used to reconstruct the
three-dimensional (3D) positions of both flying animals over
land (Ballerini et al. 2008; Wu et al. 2009; Liu et al. 2016) and
swimming animals in aquatic environments. Earlier studies of
aquatic animals were by and large limited to aquaria (Cullen
et al. 1965; Pitcher 1973; Partridge et al. 1980) and cages
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(Pitcher et al. 1985), and data were processed manually.
Recent studies applied programming tools to automatically
obtain 3D trajectories in aquaria and tanks (Viscido and Par-
rish 2004; Cachat et al. 2011; Wang et al. 2017; Ruberto
et al. 2019). However, only a few studies successfully applied
automated detection and tracking methods for fish in their
natural environment (Jiger et al. 2017; Labao and Naval
Jr 2019; Salman et al. 2019). To our knowledge, only a single
study managed to automatedly reconstruct fish 3D trajectories
in situ (Francisco et al. 2020).

Problems hindering automated tracking using underwater
video include variations in lightning conditions, unexpected
visual perturbations, and repeated changes in the background
(e.g., surface waves). Various approaches were applied to over-
come those challenges, including the use of Gaussian mixture
modeling (Salman et al. 2019) and convolutional neural net-
works (Jager et al. 2017; Labao and Naval Jr 2019; Francisco
et al. 2020). The latter technique is based on computational
training that allows the detection of the target objects (e.g., a
fish) in changing settings.

An important advantage of video tracking techniques in
natural settings lies in its non-invasive approach alleviating
the need to trap, tag or mark individuals which is time con-
suming and expensive, and can alter the behavior of tagged
individuals and of other individuals that interact with them
(Dell et al. 2014; Francisco et al. 2020). Notwithstanding
these considerations, in the common cases where individ-
uals are morphologically very similar one to another, an
important prerequisite of repetitive in situ tracking of
grouping individuals is artificial tagging. Long-term track-
ing of the identified individuals allows for assessing interac-
tions among particular group members, their response to
changes in their biotic and abiotic environment, and differ-
ences in behavioral consistency (behavioral types, or “per-
sonality”), social hierarchy and other key characteristics of
each group member.

In this study, we developed an in situ technique for repeti-
tive, high-resolution tracking of individual fish in social
groups of site-attached coral-reef fish over periods of weeks to
months. The limited foraging space of such fish enabled their
uninterrupted presence in the cameras’ field of view, and tiny,
seemingly non disruptive tags allowed the identification of
the same individuals over long time.

Below, we describe our tracking system, from tagging
through the data acquisition and its processing. We provide
detailed assessment of the performance of the system,
focusing on the following six criteria: tracking duration,
data acquisition rate, spatial precision, automation, concur-
rency (simultaneous tracking of multiple individuals), and
cost-effectiveness, as well as brief guidelines for best-
practice application and an overview of the technique’s key
limitations. The results we present are based on the raw
data, without filtering, smoothing, or interpolating.
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Material and procedures

Study fish

Our study focused on the site-attached group-forming dam-
selfish Dascyllus marginatus (Pomacentridae (Riippell 1829)).
D. marginatus is a small (~ 6 cm in TL) pomacentrid, common
throughout the Red Sea and Gulf of Oman (Fishelson
et al. 1974; Randall 1986). It forms social groups ranging in
size from 2 to 25 individuals, most groups have five individ-
uals or less (Kent et al. 2006). It resides in live corals only,
mostly in the branching corals Stylophora and Acropora (Kent
et al. 2006).

Study site

Our study was carried out at the fringing reef along the
northwestern coast of the desert-enclosed Gulf of Aqaba
(Eilat), Red Sea. This fringing reef is dominated by stony
corals, that live on a steep slope extending from the subtidal
zone to more than 50 m depth (Rickel and Genin 2005). The
D. marginatus groups we studied were found in the shallow
(9-14 m) reef off the Interuniversity Institute for Marine Sciences
in Eilat, Israel.

Fish tagging

To gently capture fish for tagging with minimal distur-
bance, the fish were first partly anesthetized by squirting clove
oil (~0.03% nominal concentration) on the home coral
where the fish hide upon arrival of divers. When a fish became
dizzy, it was gently trapped with a small aquarium net. After
trapping, each fish was placed for a few minutes in a transpar-
ent “zip-lock” bag (with small holes to allow water flow) and
injected with black visible implant elastomer (VIE) dye
(Northwest Marine Technology). The dye was implanted
beneath the fish’s translucent scales, remaining visible for
months. Each fish was tagged at a different location on its
body, enabling individual identification. Immediately after
tagging, the fish were returned to their home coral, providing
a 1 d sheltered recovery under a large cage. The entire process,
lasting approximately 60-90 min for groups of 3-5 individ-
uals, took place in the vicinity of the home coral, without ever
taking the fish to the laboratory. No changes in the fish
behavior were apparent after tagging, as based on our long-
term observations on the behavior of D. marginatus
(e.g., Kiflawi and Genin 1997; Kent et al. 2006). The study was
done under the permits 2014/40483 and 2017/41742 from
the Israel Nature and Parks Authority according to the ethics
procedures of animal treatment.

Video recording

The 3D reconstruction of the positions of a fish required
synchronized video recordings from at least 2 points of view.
In the coral reef, as on land, target animals are sometime hid-
den from a stationary camera behind obstacles such as corals,
stones or plants. Therefore, 3D tracking that requires
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simultaneous views from at least 2 points required the use of
> 3 cameras (Francisco et al. 2020).

In this study, we used three cameras attached at three cor-
ners of a 3 m equilateral triangle frame positioned around the
fish’s home coral, hereafter “camera triangle” (Fig. 1). Thereby,
each fish was seen by at least two cameras when it was outside
its home coral. The cameras we used were GoPro (Hero 3+
Black, 2704 x 1524 resolution, and Hero 5 Black 2704 x 1520
resolution) set to acquire images at a rate of 29.97 frames per
second (fps). The three cameras were synchronized every
~ 10 min to within one frame using a sharp acoustic cue, gen-
erated by a diver hammering a metal cylinder. The need for
this repetitive synchronization was an occasional loss of the
cameras’ synchronization over longer period. Synchronized
frame numbers in each video record (i.e., the frame at which
the acoustic cue started) were determined using VirtualDub
(VirtualDub 1.10.4, Avery Lee, http://virtualdub.org).

Camera calibration
The use of the three cameras for computations of fish 3D
positions required extensive calibration, as follows:

1. The intrinsic parameters of each camera were determined
using a checkerboard with 8 x 8 squares 37 mm each,
recorded in situ from different angles, and processed using
Camera Calibration Toolbox for MATLAB® (Bouguet 2010).

. The extrinsic parameters were determined for the camera tri-
angle at the end of each trial. Here we used the open program
easyWandS, which implements the sparse bundle adjustment
(SBA) calibration algorithm (Theriault et al. 2014). We used
manually digitized wand points, each digitized in the three

Fig 1. The underwater experimental setup. Three-dimensional underwa-
ter camera system consisting of three high-resolution GoPro cameras that
were tightly attached at the three corners of the 3 m equilateral triangle
frame (black arrows), positioned around the home coral of the fish
(dashed black circle), in the coral reef of Eilat.
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cameras using DLTdv5 (Hedrick 2008). For that, we marked
two 1 cm conspicuous points 10 cm apart on a transparent
wand attached to a metal stick that was repeatedly moved by
a diver across the volume recorded by the cameras (Fig. 2).
The distortions of the camera lenses were corrected using
easyWandS based on the distortion model extracted from the
checkerboard calibration.

. To determine absolute compass directions in the records,
the calibrated space was aligned to compassed metal axes
placed at the end of the trial inside the “camera triangle” at
a point that was visible by the three cameras.

Detection of fish in the videos

To detect each fish in each camera we used convolutional
neural networks. This procedure required training of the net-
work to detect D. marginatus in the images. Our training used
Google’s TensorFlow Deep Learning platform (Abadi
et al. 2016) and the faster-RCNN (Ren et al. 2017) inception
V2 model (Huang et al. 2017), pre-trained on the COCO
(Common Objects in Context) dataset (Lin et al. 2014) that
contains more than 200,000 images in 80 object categories.

We used transfer learning to train the model on > 3500
images with > 11,000 manually identified D. marginatus,
obtained during seven different days at three different loca-
tions in the coral reef. The images covered different conditions
of lighting, backgrounds, and fish orientations, including
cases when the fish were partially masking one another. After
training, the model was used to detect D. marginatus in all the
frames of our video records (Fig. 3). Model training and data
processing were performed using Python 3.7.1, Tensorflow
1.10.0 on a computer equipped with NVIDIA GeForce GTX
1080 Ti graphical processing units (GPUs).

Two-dimensional tracking

After detecting a fish in each camera and each frame, two-
dimensional (2D) tracks were reconstructed by automatically
linking close detections of the same fish in consecutive
frames. Ambiguities such as occlusions or fish entering and
exiting the branching coral were resolved manually using a
custom code written in MATLAB® that enabled the user to add
or remove detections from the trajectories and to fix detection
errors, based on visual identification of each marked fish. This
process was performed for each video separately and
manually-resolved segments accounted for less than 2% of the
2D trajectories.

Calculating 3D trajectories

To reconstruct the 3D tracks, corresponding tracks (of the
same individual) had to be identified in at least two cameras.
Manual matching of tracks of the same fish recorded by differ-
ent cameras was possible in our study since the groups were
relatively small and each individual was differentially tagged.
The calculations of the 3D trajectories were based on the
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(b)

Fig 2. The calibration object. (a) An image of the calibration wand (indicated with the white square) during the calibration. (b) A close-up view of the
calibration wand, showing the two marks 10 cm apart (white circles with an inner black dot).

Fig 3. An example of a video frame, with the detections of three fish
(marked with green squares). This image is cropped to improve
visualization.

direct linear transformation (DLT) technique as implemented
in DLTdvS (Hedrick 2008).

Assessment

We used the system to track four groups of 3-5 fish during
the years 2015-2017, recording a total of ~ 20 h of data. We
illustrate application of the method by two examples: 3D
tracks of four D. marginatus in a group occupying the
branching coral Stylophora pistillata in two opposing current
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directions (Fig. 4), and inter-individual variation in trajecto-
ries toward a prey (Fig. 5). Each recording dive lasted about
1 h, including mounting of the cameras on the tripod,
recording of the fish, calibrating, and dismounting the cam-
eras. Net tracking time per dive (hereafter “session”) lasted
~ 30 min each.

Assuming that the fish are visible by at least two video cam-
eras when out of their coral shelter, the data acquisition rate
depended on the frame rate of the video cameras and the sys-
tem’s actual 3D detection rate. We define the system’s 3D
detection rate as the percentage of 3D reconstructed points of
the total expected points recorded by the GoPro cameras at
29.97 fps. The 3D detection rate was calculated by processing
three randomly chosen datasets of 3.5-min long segments of
video records from 3 different days of two groups of
D. marginatus (with three and four fish) during which all fish
were visible and foraged outside the coral. A 3D detection rate
of 85-100% was found, with a mean of 97% (Table 1). Consid-
ering the cameras’ frame rate, our system’s average 3D data
acquisition rate was 29 Hz.

The calibration error was calculated for each recording day
based on 2 100 records of the wand that were not included in
those used for the calibration. The mean error was always
<2.25%. To assess the spatial error of the reconstructed 3D
trajectories, we compared the 3D position of specific points
along the automatically calculated tracks to their manually
determined 3D position. Since the manual procedure was
time-consuming and labor-intensive, we applied this test to
small subsets of the full trajectories. Specifically, 100 points,
50 frames apart, were manually determined for each fish, serv-
ing as our ground truth. The mean Euclidian distance between
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Fig 4. Top views of 3D reconstruction of 2.5 min of trajectories of four
Dascyllus marginatus (different colors) recorded at 11 m depth in the coral
reef of Eilat. (@) Tracks recorded on the 9th of March 2015 during NE cur-
rents (black arrow). (b) Tracks recorded on 29th of April 2015 during SW
currents. Gray spheres indicate the home coral. Note the spatial separa-
tion between individual fish within the group.

the automatically-calculated and ground-truth positions
ranged 0.6-2.0 cm across fish and datasets (Table 1), with a
grand-mean of 1.3 cm and maximum of 4.7 cm, less than the
fish’s body length (~ 6 cm).

The method described in this paper was relatively inexpen-
sive. Aside from the cost of personnel and field operations
(e.g., scuba diving), the system required funds to cover the
cost of three cameras (a few hundred US$), the VIE dye (~ 100
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Fig 5. Top view of five feeding events (dots with different shades of gray)
by the same fish during a single session. Dots indicate the consecutive
positions of the fish during the strikes. Blue asterisks indicate the expected
positions of the planktonic prey assuming it passively drifted with the
flow, which was concurrently measured at the tracking site using a current
meter (19 cms™'; 219° heading). Positions in each track were based on
20 consecutive video frames recorded at 29.97 fps. The red cross indi-
cates the position at which the fish extended its jaw to capture (suck) the
prey. The figure’s vertical axis was rotated to align with the current direc-
tion and all positions were shifted so that the capture point will be posi-
tioned at the origin.

US$ for tagging ~ 100 fish), and the cost of using a computer
for training a neural network.

Discussion

We present a method to reconstruct high-resolution 3D
trajectories of individual coral-reef fish in social groups.
In terms of tracking duration, our system provided
uninterrupted data on the movement of the same individ-
uals during ~ 30-min that could be repeated over weeks to
months, perhaps even years. During this project (2015-
2017), we focused on four D. marginatus groups that were
repeatedly recorded during 2-3 months, with 7-16 sessions
per group. Thereby, our recording sessions covered a wide
range of environmental conditions, including different
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Table 1. Performance of our system. The 3D detection rate is the percentage of 3D reconstructed points in a segment of 3.5-min
(6295 frames). The values of the distance to the ground truth are computed on 100 points. Values for each fish are given.

Distance in 3D between ground truth and automatically calculated data

Dataset # fish 3D detection rate (%) Mean (cm) SD (cm) Max (cm)

1 3 99, 100, 97 2.0,1.8,1.6 0.6,0.3,0.4 3.7,2.6,2.7

2 3 98, 96, 100 1.8,1.7,1.8 0.5,0.3,0.3 4.7,2.8,2.4

3 4 99, 100, 100, 85 0.6, 0.6, 0.7, 0.6 0.2,0.2,0.2,0.2 1.2,1.1,13,1.6
Mean values 97 1.3 0.3 24

current directions and speeds. It revealed consistent spatial
partitioning of the foraging spaces among group members
(Engel et al. unpubl.).

In terms of acquisition rate, our video records were
acquired using 29.97 fps, with an average 3D detection rate of
97%, thereby matching the present state-of-the-art techniques
that are used in the laboratory (Sridhar et al. 2019). To make
our method comparable, system performance was limited to
times when all fish were swimming outside of the coral.

Regarding spatial precision, the mean positioning error we
had was 1.3 cm. For a small fish such as the one we used
(~ 6 cm in length) and for the main objective of our study—
examine foraging movements and an occurrence of space par-
titioning among the group members, such a precision sufficed.
Studies where better precision is needed should use cameras
with higher resolution, with smaller calibration points, and
based the automated tracking on a certain point on the fish’s
body (e.g., eye, snout), rather than the position of the approxi-
mate center of the fish’s body.

An important feature of our technique was the automation.
The 2D track reconstruction was nearly (~ 95%) automated,
requiring minor manual corrections accounting for occlusions
among neighboring individuals and small errors. Track
matching before calculating the 3D trajectories was done manu-
ally. Several automated solutions were suggested for solving
occlusions (Perez-Escudero et al. 2014; Fukunaga et al. 2015; Xu
and Cheng 2017) and also for track matching (Attanasi
et al. 2014; Qian and Chen 2017). The recent version of
Hedrick’s DLTdv8 (Hedrick 2008) might also resolve this prob-
lem and other new tools are expected in this fast-growing field.
Nevertheless, as the groups of fish we studied were small (3-5
individuals), both cases of occlusions and track matching could
be easily resolved manually. Our calibration of the cameras
using the wand was manual. This calibration can be made auto-
mated if the right setup is programmed. Our automated detec-
tion of the fish in 2D used a trained neural network that
required the building of a dataset of manually tagged images
showing the fish from different points of view and under differ-
ent postures. Such a dataset should be prepared at the outset of
the study and can be used for repetitive sessions where similar
spatial settings are used. Here we used the same trained network
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to track different groups of D. marginatus inhabiting branching
corals in different locations within the coral reef of Eilat.

Our tracking method was used with groups of 3-5 fish,
which was ecologically relevant as most of the D. marginatus
groups at our study site had < 5 individuals (Kent et al. 2006).
Larger groups and more aggregated distribution within groups
are likely to increase the number of occlusions, rendering a
need for more manual work. Clearly, such cases should greatly
benefit from automated resolution of occlusions. Another lim-
iting factor is the position of the tagging marks. We used four
different tagging locations: head, upper dorsal spot, above the
tail and below it. Fish were symmetrically marked on both
sides. The use of colored die proved unsuccessful as colors
were hard to identify in the video records. Therefore, we used
black dye exclusively throughout this study. Multiple marks
should increase the number of individually tagged fish, but
incur higher risk of harming the fish. Therefore, in our study
we chose to mark the fish in no more than two positions per
side (e.g., head + above tail). All the fish we tagged survived,
none showing any sign of stress throughout the extended
period of our study.

Finally, in terms of cost-effectiveness, our system was inex-
pensive. The GoPro cameras as well as the dye to mark the fish
were off-the-shelf products, and the metal frame required sim-
ple welding.

The method presented here was tailored for tracking site-
attached fishes, where group members remain at all times
within a limited distance (~ 1 m) from their home coral. The
fish we studied, D. marginatus, was similar to many other spe-
cies belonging to the ubiquitous guild of planktivorous fish
that forage for prey in the proximity of stationary shelters
such as branching corals and structurally-complex rocks
(Wilson et al. 2008; Coker et al. 2014). For mobile groups and
those occupying larger spaces, a system consisting of series of
stationary cameras or a mobile system with stereo cameras
that follows the group as it moves can be used (e.g., Francisco
et al. 2020).

The system is currently used to investigate patterns of spa-
tial segregation and mechanisms of zooplankton hunting in
D. marginatus groups at the Red Sea (Engel et al. unpubl.). The
system provides valuable data to explore a variety of questions
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on the ecology of coral-reef fish that remain mostly unknown
since the works of Forrester (1991) and Webster and
Hixon (2000). These include the relationships between the
position of a fish and its social rank in the group, and an
assessment of the quality of different positions (e.g., whether
holding an upstream position results in higher feeding rate).
Furthermore, data from this system can complement labora-
tory work in studies such as those investigating individual
movement differences among group members (Herbert-Read
et al. 2012; Jolles et al. 2017) and escape responses (Shashar
et al. 2005). Our method could also be used on in situ studies
of the spatial organization among groups consisting multiple
species (Shpigel 1982).

Comments and recommendations

By applying emerging tools such as convolutional neural
networks for detecting individuals, our semi-automated video
tracking system portrays effective implementation of advance
computational techniques for ecology and behavioral science.
The ability to simultaneously track individual fish in their nat-
ural environment using a fine (~ 1 cm) spatial scale and high
temporal (milliseconds) resolution that can be repeated over
days and months, opens a new horizon for ecological and
behavioral research of foraging, territoriality, social interac-
tions, and behavioral repertoires of the individual
(“personality”).

Further improvements in system performance can be
obtained by following several technical lessons we gained dur-
ing this project. First, to put all the reconstructed data on the
same exact coordinate system, it is useful to reconstruct sev-
eral fixed points on the coral or other environmental struc-
tures and to align the coordinate system based on these
points. Second, the inner clock of the GoPro’s cameras proved
unreliable, resetting at unexpected times. We therefore recom-
mend to independently document by one of the cameras the
exact time using an underwater digital clock at the beginning
or end of each session. This practice could be particularly use-
ful for synchronizing data obtained with auxiliary sensors
(e.g., a current meter). Finally, in most recording sessions, the
fish occupied only a certain area in the video frame (only one
side of the coral, for example). To improve the detection pro-
cess, we first cropped the video frames to different sections,
and later converted the detected fish coordinates back to the
coordinates of non-cropped original video frame.

On a broader perspective, we note that computer vision
and deep learning tools are advancing fast, hence envision
wider use and further improvements of this and similar sys-
tems. The simple inexpensive cameras we used can be replaced
by available higher-performance cameras for studying smaller
fish or to address questions requiring higher-resolution data to
track, for example, specific body parts (Mathis et al. 2018).
Furthermore, while in our current application session length is
limited to ~ 30 min (determined by the camera’s battery and
air consumption of the scuba divers), full representation of
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environmental conditions and temporal dynamics (hours to
seasons and even years) can be accomplished by using cabled
cameras connected to an on-shore power supply and a data
logger. This, however, will generate enormous amounts of
data that will render the manual parts of data processing and
data analysis overly laborious, motivating the development of
automated detection and big-data analysis tools, which neces-
sitates tight collaborative work between biological and com-
puter sciences.
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