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Estimating nest-switching
in free-ranging wild birds:
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common methodologies,
illustrated in the White
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Reliable estimates of nest-switching are required to study
avian mating systems and manage wild populations, yet
different estimation methods have rarely been integrated
or assessed. Through a literature review and case study, we
reveal that three common methods for assessing nest-
switching blend different components, producing a wide
range of estimates. Careful component definition and
reporting are essential to properly estimate this behaviour.
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Nest-switching, displacement from a previous breeding
site to a new site (formally defined in Box 1), typically
occurs when breeding success is low, birds are inexperi-
enced or competition is high. Contrarily, nest fidelity is
common in successful breeders and monogamous species
(Greenwood 1980, Shields 1984). Lower levels of switch-
ing are associated with increased parental care, reduced
conflict with neighbours, effective movement and
improved resource utilization, even if conserved territo-
ries are sub-optimal (Vergara et al. 2006, Culina et al.
2015). Therefore, nest-switching can determine breeding
success (Greenwood & Harvey 1982, Collias & Collias
2016). Despite their importance, methods for estimating
nest-switching in free-ranging birds are not standardized,
making cross-study comparison difficult.

Nest-switching is often discussed in relation to breed-
ing dispersal, the distance between successive breeding
sites. A dispersal distance of zero represents fidelity;
non-zero distances can be categorized as local, regional
or long-distance (Box 1). Most reports of avian dispersal
are local and regional (Greenwood & Harvey 1982, Par-
adis et al. 1998, Hansson et al. 2002, but see Dale et al.
2006) but it is unclear whether these reports represent
species breeding ecology or methodological constraints.

Here we review recent studies of nest-switching from
a methodological perspective and analyse sensitivity of
switching estimates to different data collection and pro-
cessing methods using the White Stork Ciconia ciconia
as a case study.

LITERATURE REVIEW

We reviewed 89 recently published or highly cited
nest-switching and breeding dispersal studies (list of
papers and inclusion criteria in Appendix S1). After
selection, the sampling method was determined; in
some cases, multiple methods were employed. Most
(82 of 89) studies assessed switching based on direct
nest monitoring or ring recovery/resighting data (‘ring-
ing’). Direct observation is optimal for species with
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limited breeding dispersal and easily monitored breed-
ing and when researchers are dedicated to long-term
studies. Sometimes, though, assessing nest-switching is
a secondary goal, and general datasets, like those from
ringers, are employed (n > 20 reviewed studies,

conservative estimate due to ambiguity in some studies;
e.g. Naves et al. 2006, Caballero et al. 2016, Acker
et al. 2017, Riding & Belthoff 2018, Spendelow &
Eichenwald 2018). Use of historical records is inexpen-
sive but records may suffer from underreporting and

Box 1: Definitions of true and confounding components of nest-switching behaviour with examples from
the presented case study

Breeding site. Definition: The site used for breeding – a physical place (e.g. nest, burrow), territory or other pre-defined
area. Case study: The location of the nest.

(Nest)-switching. Definition: Any displacement from a previous breeding site to a new site in the following breeding
attempt or breeding season (unit of time explicitly defined). Case Study: Displacement from the nest used in the
previous breeding season.

Fidelity (F). Definition: The absence of switching; birds breeding in the same breeding site for two consecutive years (or
other unit of time). Case study: Cases in which storks bred in the same nest for two consecutive years. These cases can be
identified from tagging and genetic data. From our ringing data, F cannot be differentiated from very short-range
switches (L, below) due to poor spatial resolution of data.

Breeding dispersal. Definition: The measure of displacement between the previous breeding site and the current
breeding site. This can be zero, continuous or discrete. Case study: Breeding dispersal is measured continuously (the
shortest distance between the previous and current breeding site) and also partitioned into three discrete categories –
local, regional and long-distance – defined below.

Local switches (L). Definition: Nest-switching in close proximity (explicitly defined) to the breeding site, e.g. use of a
different nest within the breeding territory or use of a neighbouring territory or breeding site. Case study: Nest-switches
within 2 km of the previous breeding site. These switches represent local switches within villages (storks typically nest
on roofs in our study site). They cannot be resolved from our ringing data (spatial resolution too coarse, grouped with F)
or from our genetic data (only an individual’s presence or absence in the focal breeding site in consecutive years is
known). They can be determined from the GPS data.

Regional switches (R). Definition: Nest-switches within the population’s breeding range but with dispersal distances
greater than those defined for L. Case study: Nest-switches beyond 2 km from the focal nests but within the study
search area (here, ~52 000 km2), assumed to represent a continuous population based on gene-flow patterns. These
switches can be resolved from ringing and GPS data but not from our genetic data.

Long-distance dispersal switches (LDD). Definition: Nest-switches beyond the breeding range, e.g. emigration. They can
be determined from GPS data downloaded over a cellular network/satellites or from ring resightings outside the breeding
range. Study sites with buffer zones beyond the range edgesmay be used to identify some LDD and these types of switches
could then be partitioned to LDD-within-buffer or LDD-beyond-buffer.Case study:Nest-switches beyond the study area.
These switches cannot be directly quantified from any of our data and are included in theM component defined below.

Missing birds (M).Definition: Birds that were not observed (i.e. not resighted, downloaded, sampled) in the second of two
consecutivesamplingyears.ThiscanbeduetoLDD,mortality, tagmalfunctionorothererrors.Casestudy:Thesecasescanbe
resolved from ringing and tagging data. For our genetic data, cases can be defined as either F or as all other options
(L + R + M + P, below).

Non-nesting storks (P).Definition: Individuals not breeding in the secondof two consecutive years (breedingpause; Shaw&
Levin2013)butpresent in thebreedingrange.Case study:Thesecasescanbeexplicitly identified for taggedbirdsnotapartof
the M category, as data download was accompanied by detailed breeding behaviour observations. For our ringing data,
recordsofF + B,RandMprobably includesomecasesofP.Similarly,Pcannotbeindependentlyresolvedforanyof thenon-F
classifications from our genetic data.
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non-uniform observation efforts (Greenwood & Harvey
1982, Schwarz & Seber 1999). Furthermore, breeding
status is often lacking, though imperfect data may be
improved with modelling (e.g. White & Burnham
1999, Sandercock 2006, McClintock & White 2012,
Rushing et al. 2017, Weiser et al. 2018, Ayers et al.
2019). Additionally, data processing, specifically regard-
ing missing or non-breeding individuals, and technical
errors (e.g. low-resolution location data, misread rings)
might skew findings.

More recently, genetic methods have been employed
to assess switching (n = 10; e.g. Stow & Sunnucks 2004,
Hoffman et al. 2006, Bulut et al. 2016, Caballero et al.
2016). Many nests can be sampled non-invasively or
with minimal trapping effort, but genetic analyses can
be expensive and, without extensive sampling, breeding
dispersal cannot be elucidated (Fowler 2005).

A third method is long-term movement tracking
(n = 4; e.g. Badyaev & Faust 1996, Garcia-Heras et al.
2019). Movement data, though, are limited to trapped
and subsequently tagged birds, and breeding status is
often unknown. Furthermore, application of movement
studies is limited to larger species, can be cost-prohibitive,
and may negatively affect fitness and behaviour (Lameris
& Kleyheeg 2017, Severson et al. 2019). Finally, it can be
difficult to reliably differentiate between missing, dead or
dispersed birds; thus, the occurrence of local dispersal
may be overestimated. Seven studies reviewed used mul-
tiple methods. In some cases, estimates overlapped (e.g.
Saunders et al. 2018, Li et al. 2019); in others, they did
not match (Robinson & Jones 2014), were not compared
(e.g. Carey et al. 1992) or were used to estimate different
parameters (e.g. dispersal vs. genetic structure; Botero-
Delgadillo et al. 2017).

Following data collection, researchers must process
missing birds – those not observed in subsequent seasons
– and those that take a breeding pause (Shaw & Levin
2013). When missing birds are included in switching esti-
mates, they can be classified as switches (Blackmer et al.
2004, Ponnikas et al. 2017, Sumasgutner et al. 2019) or as
some catch-all ‘other’ category (e.g. Jenkins & Jackman
1993, Garcia-Heras et al. 2019). The former inflates
switching and the latter underestimates it by ignoring
long-distance switches. In many studies, missing birds are
ignored, making samples a biased representation of the
population with 100% survival and 0% long-distance dis-
persal (LDD; Cilimburg et al. 2002, Baker et al. 2017).
Thus, some researchers estimate a ‘rate of return’, with a
denominator of all individuals observed in the previous
year, and then a fidelity rate as a proportion of returned
individuals (e.g. Gauthier 1990, Williams & Rodwell
1992, Bourgeois et al. 2014, Hedlund et al. 2017, Becker
et al. 2018). Some researchers further divide the return
rate into its components, modelling survival, emigration,
immigration and other parameters (e.g. Sandercock et al.
2000, Cilimburg et al. 2002, Tolvanen et al. 2017, Becker

et al. 2018, Weiser et al. 2018). Many other studies of
switching, fidelity and breeding dispersal, particularly
those examining underlying drivers and implications, only
employ the second estimate (e.g. Hoover 2003, Robert
et al. 2014, Jablonszky et al. 2020). In some, it is difficult
to ascertain how missing birds were handled.

Ambiguity also surrounds non-breeding individuals,
observed either as non-breeders or in non-consecutive
years (breeding pause). Non-breeders have been handled
as breeders (Payne & Payne 1993, Robert et al. 2015,
Jenkins et al. 2019) or as non-breeders (Williams & Rod-
well 1992, Spendelow & Eichenwald 2018), or have
been excluded explicitly (Blums et al. 2002, Ayers et al.
2019) or implicitly (e.g. when only individuals trapped
at nests in consecutive years are studied; Part & Gustafs-
son 1989, Forero et al. 1999, Serrano et al. 2001, Her-
vey et al. 2019, Ilan et al. 2019). Often these decisions
must be extrapolated (Danchin et al. 1998, Tolvanen
et al. 2017, Sumasgutner et al. 2019).

CASE STUDY: NEST-SWITCHING IN THE
WHITE STORK

To demonstrate sensitivity of nest-switching estimates to
data collection methods and filtering, we present a case
study of nest-switching in the White Stork using three
data collection methods and two filtration criteria.

The White Stork is a long-distance migrant known
for its social monogamy (Cramp 1978). Ringing studies
suggest they are faithful to mate and nest-site (Barbraud
et al. 1999, Vergara et al. 2006, Itonaga et al. 2011), but
genetic methods have revealed extra-pair paternity
(EPP; Turjeman et al. 2016). This large bird is suitable
for estimating nest-switching because it is easily
observed, extensively ringed and tagged, and genetic
material from young is easily collected.

We collated data from several independent research
bodies and projects in north-eastern Germany, choosing
sites and years that would ensure high spatiotemporal over-
lap across methods (Fig. 1). An umbrella project encom-
passed studies of migration (GPS; Flack et al. 2016, Rotics
et al. 2016, 2017, 2018, 2021, Zurell et al. 2018) and EPP
(genetics; Turjeman et al. 2016). To increase overlap
between GPS and genetic datasets, we expanded sampling
beyond the study’s initial scope. Ringing data were collated
retroactively, thus accurately approximating datasets used
in many mating studies.

Sample collection, filtering and switching
estimation

We obtained ringing data from the Hiddensee Bird Ring-
ing Centre, Germany (2011–2016, Fig. 1). Juveniles are
ringed annually; however, ringing data for adults may
only be resolved at the village level (exact nest
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coordinates not registered). Two datasets were created
to demonstrate how missing individuals affect switching
estimates. See Appendix S2 for specific criteria. Briefly,
Ring1 (n = 1112) included birds observed in at least the
first of two consecutive years (missing birds included),
and Ring2 (n = 839) included only birds with recorded
resightings in two consecutive years (missing birds
excluded). If consecutive recorded locations were within
2 km of one another, no switch was registered. We used
this buffer because exact bird locations were unavailable.
Birds recorded beyond the buffer, and cases where birds
were not observed in the second of two years (Ring1),
were denoted switches.

We collected DNA samples (plucked feathers) from
White Stork nestlings prior to fledging in 2012, 2013,

2015 and 2016 in north-east Germany (Fig. 1). We per-
formed DNA extractions and molecular work for nests
with samples from two consecutive years (696 individ-
ual: 126 independent nests plus 19 with samples from
all years). Details of sample filtering are given in
Appendix S2; methods for DNA extraction, and geno-
typing are from Turjeman et al. (2016; see also
Appendix S2). Due to difficulty in trapping adults, we
used kinship relatedness analysis without parental
genetic material (Blouin 2003), assigning pairs of nest-
lings from the same nest to three relationship classes and
classifying nests as: (1) only full siblings (FS), (2) one or
more half siblings (HS), (3) one or more unrelated indi-
viduals (U) using the two-programme congruency
method from Turjeman et al. (2016). We did this within

Figure 1. Geographical range for each of the three study methods. This map shows the points of data collection for each of the
three study methods. Black dots represent ring resightings (2011–2016); points are thought to be within 2 km of the ringed individ-
ual’s nesting site. Grey circles represent nests sampled for genetic analysis (2012, 2013, 2015, 2016) and white circles represent
nesting locations of GPS-tagged Storks (2011–2015).
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a single year (to identify EPP) and then over consecutive
years, inferring nest-switching of neither, one, or both
parents by comparing sibling relatedness in the same
nest over two consecutive years. Nestlings identified as
HS or U were associated with one or two parent
switches, respectively. Complex cases, including inci-
dents of EPP, are addressed in Appendix S2, Figures S1
and S2, and Table S2.

We tagged 62 adult Storks from 2011 to 2013 (see
Rotics et al. 2016) in an area largely overlapping with
the other sampling regions (Fig. 1) and downloaded data
in the area through 2016 (no remote download capabili-
ties). Nests were assigned to sites with the highest den-
sity of GPS fixes (Rotics et al. 2018) and breeding status
was confirmed by observation. In the few cases (n = 4)
where both adults in the nest were tagged, we included
only one bird. As with ringing, we built two datasets
(Appendix S2). Tag1 (n = 107) included all birds that
bred in the first of two consecutive years (missing birds
included), and Tag2 (n = 87) included all Storks found
in two consecutive years, as long as they bred in the first
year (missing Storks excluded). Storks that returned to
the same nest (GPS location) in consecutive years were
not switches, regardless of mating status. Storks found at
different locations or missing (Tag1) were switches, as
were those found but not associated with a nest (breed-
ing pause).

Comparison of switching estimates

For ringed and GPS-tagged individuals, we quantified
nest-switching as presence (1) or absence (0) of switch-
ing in consecutive years. For genetically tested nests, we
quantified switching as no, one or two switches (per
nest) based on multi-year relatedness. Males and females
were handled together. We made pairwise comparisons
of switching estimates, converting genetic comparisons
into binary (0/1) switching categories and including only
one individual per nest. For each of the datasets, all 2-
year comparisons, regardless of year, were grouped and
included. We only compared Ring1 with Tag1, Ring2
with Tag2, and the genetic method with all other data-
sets. We did not compare Ring1 with Ring 2 or Tag1
with Tag 2 as these datasets are nested.

Raw nest-switching estimates ranged from 0.11 to
0.37, and the datasets gave significantly different esti-
mates (Fig. 2, Table 1; Tables S4 and S5). In the three
cases with both genetic and movement data for the
same Stork, findings were congruent.

Discussion

We quantified nest-switching in >1300 paired nesting
incidents using different data collection and filtration
methods, with data collated to maximize spatiotemporal

overlap. Raw estimates from the datasets varied across
methods and between filtration criteria. Ring1 and Tag1
(missing individuals included as switches) probably over-
estimated switching; modelling is needed to partition
missing individuals into categories such as ‘switched’,

Figure 2. Nest-switching estimates for all employed methods.
The rate of switching is presented for two datasets each of
ringing and tagging data: individuals that were recorded in at
least 1 of 2 years (Ring1/Tag1 – missing individuals included)
and individuals recorded in both years (Ring2/Tag2 – missing
individuals excluded). Genetic data presented are from 2-year
comparisons, reduced to one individual per nest (chosen ran-
domly). Bars marked with the same letter are not significantly
different from one another, based on a set of Fisher exact
tests with a Bonferroni correction (corrected a = 00083).

Table 1. Nest-switching based on ringing, genetic and GPS
data.

Comparison

Number of switches

Switch rate n0 1 2

Ring1 743 369 – 0.3318 1112 (408)
Ring2 743 96 – 0.1144 839 (408)
Genetics 55 30 11 0.2708 96
Tag1 67 40 – 0.3738 107 (51)
Tag2 67 20 – 0.2299 87 (39)

For ringed and GPS-tagged individuals, nest-switching events
were quantified as presence (1) or absence (0) for two subsets
of the data: Ring1/Tag1 (including missing individuals) and
Ring2/Tag2 (excluding missing individuals). For genetically
analysed birds, nest-switching events were identified as 0, 1
or 2 switches per nest. n is the number of 2-year comparisons
examined per category. Numbers in parentheses are the num-
ber of unique individuals per category in cases where data
from more than one 2-year comparison are included. Note that
when including only one individual at random from each of
the genetic nests, 26 individuals (of 96) switch nests
(rate = 0.2708).
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‘dead’ and ‘pause’. Removing missing individuals (Ring2,
Tag2) probably underestimated switching because some
missing individuals may have made long-distance
switches. Estimates were consistently lower for ringing
than for tagging because we could not resolve local
switches from available records. The threshold of
<2 km, which approximates data resolution, also resem-
bles the scale of local nest aggregations in East German
villages. Switching in the genetic dataset, which
includes missing individuals (i.e. not sampled when the
same nest is resampled), was slightly lower than in the
Ring1 and Tag1 estimates. We excluded nests without
genetic samples in the second year, some of which
probably represented switches. The difference between
Ring2 and Tag2 is surprising, as local switches missing
in Ring2 cannot close this gap. Assuming all resighted
birds were breeders could have depressed the Ring2
switching rate in comparison with movement-based
methods in which breeders were differentiated from
non-breeders (classified as switches). Findings in the
context of previous White Stork research are given in
Appendix S2.

SYNTHESIS TOWARDS BETTER
RESEARCH PRACTICES

Before addressing how to assess nest-switching in free-
ranging animals, it is important to understand what this
behaviour comprises. In Box 1, we define the various
components of switching, giving examples from our case
study. Benefits and limitations of the various methods
are summarized in Table 2.

Different studies have different aims. For some, the
main aim is to quantify nest-switching or fidelity. As
such, it is important to use a common denominator
representing the entire breeding population (e.g. all
sampled birds, as in return-rate calculations). Within
this denominator, proportions of fidelity and switching
will not sum to 1 because missing birds and non-breed-
ers also exist. These birds should be classified as ‘other’
or, ideally, through modelling, partitioned into subcate-
gories (e.g. pause, temporary or permanent LDD,
death; for examples, see Becker et al. 2018, Ayers
et al. 2019). Researchers must also clarify (1) whether
only one potential switching event (i.e. one 2-year

Table 2. Methods employed to assess nest-switching.

Method Filtration options Strengths Limitations Improvements

Ringing Found in at least one
of two consecutive
years

Found in two
consecutive years

Inexpensive, large
proportion of population
easily tracked, long-term
data can be obtained
retroactively

Must trap individual, must re-sight
or re-trap, difficulty in
determining dispersal vs.
mortality, additional
observations needed to
determine breeding status, poor
location resolution, prone to
observation bias

Study specific data
collection rather than
retroactive collation,
inclusion of a search
buffer beyond the focal
population’s breeding
range

GPS
tagging

Data in at least one of
two consecutive years

Data in two
consecutive years

High-resolution movement
data without observation
effort, track multiple years,
remote data download can
help differentiate dispersal
from death

Expensive, must trap individual,
difficulty in determining dispersal
vs. mortality if remote data
download is unfeasible,
additional observations may be
needed to verify breeding status
and mortality rate, limited to
relatively large-bodied species,
tag lifetime can limit extent of
long-term tracking

Lighter tags enable
tagging a wider variety of
species, less expensive
tags enable tracking a
larger proportion of the
population, remote data
download reduces
observer biases

Genetic
testing

Adult feathers retrieved
in at least one of two
consecutive years

Adult feathers retrieved
in two consecutive
years

Two-year nest-wide
offspring comparisons

Sample non-invasively/only
offspring, uncover EPP,
breeding output data for
many mating pairs

Need for dedicated lab space
and expertise, individual identity
remains elusive without high-
resolution, species-specific
markers, no measure of
dispersal distance or mortality,
some methods are expensive

Costs of whole genome
sequencing and
genotyping by
sequencing are
decreasing, improved
kinship assignment
allows application in non-
model species

Strengths and limitations of the various methods employed to estimate nest-switching in free-ranging birds along with potential or
recently implemented improvements.
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observation) is included (reduced data dependencies),
(2) whether males and females are treated separately
(sexually dimorphic breeding behaviour) and, if not,
(3) whether one or both individuals per nest are
included (we do not recommend this: behaviours are
probably not independent).

Other studies examine drivers and implications of
switching. We believe it is important to include missing
birds and non-breeders (as above) and to assess drivers
of breeding pause and long-distance dispersal in addition
to mechanisms driving local and regional breeding dis-
persal. Yet challenges have led many researchers to
address mechanistic questions regarding switching beha-
viour using a subset of their data – the birds that
returned/nested in two consecutive years (see literature
review). In these cases, it is important for researchers to
discuss their findings in light of potential biases that arise
from the exclusion of missing and non-breeding birds.
While it seems trivial to dedicate text explaining how
switching was measured, including this discussion allows
readers to understand and accurately interpret findings,
enabling cross-study comparisons and syntheses.

Because avian studies of nest-switching and breeding
dispersal (distance) have generally been based on direct
observations data, most dispersal events are thought to be
local or regional (Greenwood &Harvey 1982, Paradis et al.
1998), in line with resighting efforts. We suggest research-
ers include an additional ‘searching buffer’ beyond their
focal site (e.g. Ponchon et al. 2018) to increase detection of
longer-distance switches. Until recently, tagging studies
faced a similar bias (Strickland et al. 2011), which remote
data transfer and acceleration logging have reduced by
uncovering LDD and mortality events (Garcia-Heras et al.
2019, Sergio et al. 2019, Rotics et al. 2021). Genetic stud-
ies based only on offspring give reasonable estimates of
switching, but parental death cannot be differentiated nor
dispersal distance deciphered. Shed adult feathers can be
collected and matched across years to identify adults that
were ‘recaptured’. In this way, switching behaviour and
dispersal within the study site can also be defined by calcu-
lating the distance between shed feathers in consecutive
years (e.g. Janowski et al. 2018, Hervey et al. 2019). There
is still a problem of missing birds (feathers sampled in only
1 year), similar to resighting biases. Although there are
strengths and limitations to each method surveyed here,
tagging with automatic, large-scale, remote download –
currently the standard GPS tracking method in wildlife
telemetry with either GSM or satellite communication –
provides the best data to comprehensively assess nest-
switching, allowing for appropriate classification of missing
birds.

CONCLUSION

As with other field methodologies, nest-switching can be
estimated by different methods and in the context of

different research questions. This variability introduces
unavoidable complexities, rendering careful reporting of
methodological decisions and consideration of inherent
method-specific biases necessary for proper interpreta-
tion of the results. This will provide the means to syn-
thesize findings across studies, towards elucidating
patterns of variation in nest-switching, and its drivers
and consequences.
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