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Summary

1. Biological invasions constitute a major component of human-induced environmental change and
have become a world-wide problem threatening global biodiversity and incurring massive economic
costs. Consequently, research on biological invasions proliferates, placing a major emphasis on
species traits and habitat characteristics associated with successful invasion. Yet, the mechanisms
underlying rapid spread and the resulting patterns remain largely unexplored.
2. Using data collected since 1980 and earlier at the county level all over China, we studied the contri-
bution of potential dispersal vectors – railroads, rail stations, roads, general human activity, rivers and
winds – to the spread of 17 of China’s worst invasive plant species. Focusing on long-distance disper-
sal events, we calculated the minimal arrival speed for the first record of each species in each county.
We also developed and applied a new method to account for observation bias due to the proximity to
roads, using observational data of 776 native (non-invasive) plant species throughout China.
3. We found that human-related vectors are accountable for the vast spread of all 17 invasive plant
species we examined. Spread patterns were characterized by long jumps of tens to hundreds of kilo-
metres and extremely fast average spread rates of roughly 2–4 km per year, and a very broad range
(0�1–128�2 km per year) with high variability between years. These rates are much higher than those
expected from classic dispersal vectors such as water, wind or animals. Commonly used fat-tailed
dispersal kernels did not fit the observed distribution of long jumps for any species.
4. Synthesis. We found pervasive empirical evidence for the overriding role of humans in the large-
scale spread of invasive plants from multiple taxa. The observed spread patterns differ significantly
from those portrayed in the literature, emphasizing the need to develop new frameworks to explore
large-scale spread in general and invasive spread in particular. With public data sets of invasive spe-
cies observations becoming increasingly more available, the time is ripe to go beyond exploration of
species traits and habitat suitability and to examine the actual patterns and the mechanisms of large-
scale invasive spread, even at a scale of thousands of kilometres over land.
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Introduction

Biological invasions – the entry, establishment and spread of
non-native species – are considered a major cause of human-
induced environmental change and have become a pressing

problem in every biome on earth (Elton 1958; Williamson
1996; Pimentel, Zuniga & Morrison 2005; MacIsaac, Tedla &
Ricciardi 2011). Biological invasions threaten global biodiver-
sity by altering the structure and function of ecosystems
(Levine et al. 2003; Trakhtenbrot et al. 2005; Cook et al.
2007) and disrupting key biological interactions (Mitchell
et al. 2006; Traveset & Richardson 2006). These invasions
have also been considered a major cause of recent extinctions
(Thomas et al. 2004) and have had a substantial economic
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impact (Pimentel, Zuniga & Morrison 2005). The problem of
biological invasions is expected to be exacerbated in light of
global climate change, and several lines of evidence have pre-
dicted a rapid increase in the spread and damage caused by
invasive species (Dukes & Mooney 1999; Walther et al.
2009; Bradley et al. 2010).
Invasive species, defined as non-indigenous species that

have established and reached a widespread distribution in an
area far beyond their native range (Colautti & MacIsaac
2004), undergo a process of spatial spread we termed here as
‘invasive spread’. Similar to the spread of indigenous plant
species in their native range, the process of invasive plant
spread is shaped by three distinct, yet non-mutually exclusive,
components: fecundity (the number of seeds produced and
dispersed), dispersal kernel (the probability of a dispersed
seed to arrive at a given location with respect to its mother
plant) and habitat suitability (the probability of a seed to
reach the reproductive stage). There has been extensive
research on the roles of habitat suitability (Rouget & Richard-
son 2003; Morisette et al. 2006; Evangelista et al. 2008; Iba-
nez et al. 2014) and fecundity (Parker 2000; Lockwood,
Cassey & Blackburn 2005; Mason et al. 2008) in determining
invasive spread. Many studies have successfully quantified
dispersal kernels of invasive plants over relatively short spa-
tial scales (Buckley et al. 2005; Skarpaas & Shea 2007;
Caplat, Nathan & Buckley 2012) or applied dispersal kernels
to examine theoretical scenarios over large scales (Engler &
Guisan 2009; Nathan et al. 2011a; Bullock et al. 2012). Yet,
our ability to quantify dispersal kernels underlying actual
large-scale spread of invasive species is still rather poor (but
see Chapman et al. 2016), and the challenge of elucidating
the relative contribution of different (and often unknown) dis-
persal vectors (Nathan et al. 2008) remains largely unre-
solved. Therefore, progress in understanding and predicting
actual large-scale invasive spread still awaits empirically
derived mechanistic models capable of representing spread
over large areas (i.e. hundreds to thousands of kilometres).
The challenge of quantifying dispersal kernels underlying an
actual large-scale invasive spread is rather overwhelming,
involving extremely rare but critical events that are inherently
difficult to quantify and predict (Nathan 2006), multiple
potential dispersal vectors and other interacting, and usually
unknown, factors (Higgins, Nathan & Cain 2003b; Higgins
et al. 2003a; Nathan 2006). Furthermore, the spread of inva-
sive plants is almost always meagrely documented, and the
available information typically appears in the form of sparse
anecdotal, historical snapshots of the invasive process. It has
been suggested that due to such difficulties and uncertainties,
the process of large-scale spatial spread is practically unpre-
dictable (Clark et al. 2001). Without downplaying these diffi-
cult fundamental challenges, understanding the underlying
mechanisms and developing predictive frameworks for large-
scale invasive spread are still of critical importance for both
basic and applied research of biological invasions (Trakhten-
brot et al. 2005; Jongejans, Skarpaas & Shea 2008).
Advanced models based on reaction–diffusion equations

have been commonly used by ecologists to predict asymptotic

rates of invasion (Skellam 1951; Nathan et al. 2011a). Pre-
dicted rates of spread were found to match observed rates
demonstrating the value of this approach (Okubo et al. 1989;
Andow et al. 1990; Allen et al. 1991). Yet, these models are
based on the assumption that the dispersal kernel of an indi-
vidual is characterized by a continuous function with a mode
relatively close (i.e. <100 m) to the source. On the other
hand, observed patterns of invasive plants are often character-
ized by very long jumps (Kot, Lewis & van den Driessche
1996; Buchan & Padilla 1999). Such extreme long-distance
dispersal (LDD) events are rather rare, and therefore problem-
atic to quantify or even recognize (Nathan et al. 2003).
Therefore, evaluating plant invasive spread requires empirical
data at sufficiently large spatial (100s km) and temporal (over
a few decades) scales.
In this study, we used a rare large-scale data set in order to

characterize the main patterns and mechanisms that drive the
rapid spread of 17 of China’s worst invasive plant species
(Table 1) across mainland China. Using data of first arrival to
the county (i.e. the location of the first observation in each
invaded county, Fig. 1), we aimed to compare the potential of
some key LDD mechanisms in determining the rapid spread
of all 17 plant species. Because current GIS data are available
at good quality only for the last 3–4 decades, we limit our
analysis to observations made after 1980, which include a
total of 4698 ‘first arrival’ observations (276�4 data points per
species on average, see Fig. S1, Supporting Information).
To assess the spread rate based on this unique data set, we

defined a metric called ‘minimal arrival speed’ (MAS, see
Materials and methods), the minimal speed the species had to
spread in order to get to each ‘first arrival’ observed location
at the observed year. Minimal arrival speed values were com-
pared to spread rates reported or expected for classic ‘natural’
(non-human) LDD mechanisms such as hydrochory, zoochory
and anemochory. The former two mechanisms were assessed
based on previously published studies (see Discussion); the
latter was calculated as the theoretical spread rate expected by
extreme winds. We then compared different human- (e.g. dis-
tance from roads, population) and habitat-related [distance
from rivers, normalized difference vegetation index (NDVI)]
distributions of potentially influential factors for each species
invasion to those expected by random sampling from each
invaded county. For example, to assess the contribution of
cars to the spread of invasive plants through jump dispersal,
we tested if the distances from the nearest road to the first
arrival locations differ from those expected by random. We
accounted for a sampling bias towards more accessible areas
(Reddy & D�avalos 2003) by comparing our data set to the
observational data of 776 non-invasive species (Table S1).
Our null hypotheses were that (i) spread rates will match
those reported for classic ‘natural’ dispersal factors, and that
(ii) for each human- or habitat-related factor, observed distri-
butions will not differ significantly from those expected by
random. Our alternative hypothesis was that invasive plants
spread mostly by long jumps mediated by humans that act as
extreme LDD vectors. Hence, we alternatively predict that (i)
MAS values would be much higher than those reported or
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calculated for the known natural dispersal vectors of the study
species (Table 1), and (ii) that the distribution of human-
related factors will differ significantly from the null expecta-
tion of random distribution.

Materials and methods

STUDY SPECIES AND DATA COLLECTION

China – a vast country that varies tremendously in topography, cli-
mate and other environmental features – has served as a continent-
scale arena for the establishment and spread of many invasive alien
species over the last decades. At least 268 invasive alien plant species
are known in China, some of them, and especially the 17 species
selected for this study, have caused severe damage to national econ-
omy and development and to local ecosystems and native species
(Wan, Guo & Zhang 2009; Ma, Yan & Shou 2013). In turn, these
invasive plant species have received considerable attention from local
residents, scientists and the government, and substantial resources
were allocated to control or manage them. As such, information about
the invasive spread of these species is well documented, although it
spans over multiple sources. We thus collected data from various
available sources, including herbarium records, monitoring pro-
grammes operated by locals and by the central governments, scientific
collections, published literature and our own field surveys, started in
2002 and is still ongoing. These large efforts yielded an exceptionally
rich data set that portrays the invasion process of the study plants suf-
ficiently well. The 17 study species were eventually selected as those
presenting the greatest risk to China’s economy and environment
(Ma, Yan & Shou 2013), as well as those for which the first arrival
year of presence was known in the first invaded county in China and
for all subsequently invaded counties as well. Criteria for selecting
the 17 species did not include invasion speed, human effects or num-
ber of invaded counties. Yet, the risk criterion restricted selected spe-
cies to those that have invaded more than one natural area (Ma, Yan
& Shou 2013), hence the selected species were relatively broadly

distributed. Overall, our data set includes 10 835 records from 1868,
but for most analyses we focused on the 4698 first arrival records
post 1980 (see Relevant position index below). The exact location of
each record was available in most cases, and all records were faith-
fully assigned at the county level. China has 2391 counties (and 1415
counties in our data set) that are 63�2 � 47�7 km apart (mean � SD
of the distance between central position of two neighbouring counties;
range 0�6–670 km). Thus, analysing our data set at the county level
allows a focus on LDD events at unusually large scales with excep-
tionally large sample sizes.

The 17 study species (Table 1) encompass five families and differ
in longevity (nine annuals, two annuals or biennials, four perennials
and two either annuals or perennials), origin (10 N. America, 5 S.
America and 2 from Central America), height (five are 0�4–0�6 m tall,
six are between 1�2–2 m tall and the rest between 0�7–1 m tall) and
other important traits such as previously observed dispersal mecha-
nisms, typical dispersal season and introduction pathway (for details,
see Table 1).

MINIMAL ARRIVAL SPEED

The ‘MAS’ was defined as the minimal dispersal speed a species had
to spread in order to get to a new specific location (i.e. newly invaded
county) at a specific time (i.e. year of first observation at the county).
For each earliest observed location in a county not previously
invaded, we took the distance from all previously observed invaded
points of the same species, divided those distances by the elapsed
time for each observation and took the minimal speed of all calcu-
lated speeds as the species MAS at the specific location.

PROBABIL ITY DISTRIBUTION FITT ING

Observed distributions of MAS values of each species were tested
for goodness-of-fit to five commonly used probability distribution
functions: Gaussian, Exponential, Weibull, Log-normal and WALD.
Because our data were mostly collected at the county level

Table 1. Main traits of the study species. Main traits of the 17 study species. Abbreviations for known dispersal mechanisms are: WD – wind
dispersed, WT – water dispersed, HM – dispersed by humans and AN – dispersed by animals. Introduction pathways are: I – human intentional,
A – human accidental, N – natural, U – unknown

Species Family Longevity Origin
Dispersal
mechanism

Dispersal
months

Invaded
counties
since 1980

Introduction
pathways

Ageratina adenophora Asteraceae Perennial Mexico WD, WT 3–6 126 N
Ageratum conyzoides Asteraceae Annual, Perennial S. America WD, HM 1–12 295 I
Alternanthera philoxeroides Amaranthaceae Perennial S. America WT, HM 1–12 389 I
Amaranthus retroflexus Amaranthaceae Annual USA AN, WD 8–10 306 A
Amaranthus spinosus Amaranthaceae Annual Trop. America WD, WT, HM 7–11 328 A
Amaranthus viridis Amaranthaceae Annual Trop. N. America WD, WT, HM 8–10 356 A
Ambrosia artemisiifolia Asteraceae Annual N. America AN, WT, HM 9–11 385 A
Aster subulatus Asteraceae Annual, Biennial N. America WD, WT, HM 8–10 289 A
Chenopodium ambrosioides Amaranthaceae Annual Mexico AN, HM 4–1 356 U
Conyza canadensis Asteraceae Annual, Biennial N. and C. America WD, WT, HM 5–9 347 U
Erigeron annuus Asteraceae Annual N. America WD, WT, HM 1–9 380 U
Eupatorium odoratum Asteraceae Perennial N. America WD, HM 4–12 184 N
Flaveria bidentis Asteraceae Annual S. America AN 8–10 123 A
Galinsoga parviflora Asteraceae Annual S. America WD, HM, WT 7–10 307 U
Lepidium virginicum Brassicaceae Annual, Biennial,

Perennial
N. and C. America AN, HM 5–9 307 U

Phytolacca americana Phytolaccaceae Perennial N. America AN, HM 8–10 310 A
Solanum rostratum Solanaceae Annual N. America WT, AN, WD 8–10 47 A
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(repeated observations within the same county were much less docu-
mented), we focused on first arrival to a county (MAS) as explained
above. This implies that calculated MAS cannot account for local
(within-county) dispersal. We therefore fitted the data to truncated dis-
tributions, setting the minimal observed MAS value for each species
(Table 2) as the lower bound threshold. The area under the curve
beyond this threshold was normalized to unity for all five distributions.

RELEVANT POSIT ION INDEX OF POTENTIALLY

INFLUENCING FACTOR IN A COUNTY

For each species in each invaded county, we looked at the different
potentially influential factors (e.g. population, distance from road) at
the first observation point in the county with respect to its distribution

throughout the county. Our null hypothesis is that the random vari-
able representing the relevant position (ranging from 0 to 1) of a fac-
tor on the county distribution will be uniformly distributed. Thus, if
for a certain species, the distribution of the relative position of a fac-
tor across all counties invaded by it will differ significantly from a
uniform distribution, we conclude that this factor, or some other
mechanism tightly correlated with this factor, should be considered in
explaining the observed invasive spread. Because habitat suitability
may affect the probability of each location to be the first arrival posi-
tion, we reran our calculations while normalizing for habitat suitabil-
ity and also compensated for sampling bias to accessible areas (see
Compensating for sampling bias). Although some historical records
were 148 years old, we limited our analysis to observations collected
on 1980 or later, to match the period for which GIS data were avail-
able. GIS data on China county borders, distance from settlements

Fig. 1. Plant data used in the study. (a) Example of first arrival data. White dots are the locations of first observation of the plant species Alter-
nanthera philoxeroides at the county level. (b) Total number of observations of invasive species at the county level. The data include only cases
where the species invaded the county after 1980. (c) Example of the invasive spread of the plant species A. philoxeroides. Black polygons are
counties where invasion was observed before 1980, white polygons are counties where the invasive species was not observed until 2010.
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(which was set as 0 inside settlement borders), distance from roads
and distance from railways and rail stations were downloaded from
CHGIS website (http://www.fas.harvard.edu/~chgis/data/dcw). Dis-
tance from rivers was calculated based on data downloaded from the
HydroSHEDS site (http://hydrosheds.cr.usgs.gov). We defined a new
‘major rivers’ layer by taking only rivers with an ‘Up_cells’ attribute
(a proxy for mean annual flow, see http://hydrosheds.
cr.usgs.gov/hydro.php) higher than 2000. Data on human footprint
was downloaded from ‘The global footprint network’ (http://www.
footprintnetwork.org). All data were saved at 1 km 9 1 km spatial
resolution.

HABITAT SUITABIL ITY

Habitat suitability was modelled for each of the study species over
the entire China mainland by the Maxent model (Phillips, Dud�ık &
Schapire 2004), using all observational data (i.e. including pre-1980
and not first arrival to county data). Atmospheric input variables were
based on the BioClim data set (including annual mean, minimum and
maximum temperatures, annual and diurnal temperatures range,
isothermality, annual precipitation and elevation), downloaded from
the WorldClim web site (http://www.worldclim.org/bioclim). We used
all atmospheric variables included in the data set. The habitat suitabil-
ity raster for each species (see Fig. S2) was saved at 1 km 9 1 km
resolution.

COMPENSATING FOR SAMPLING BIAS

Observations of invasive species are expected to be biased towards
locations more accessible by human such as roads (Kadmon, Farber
& Danin 2004). In order to compensate for this bias, we ran the

same analysis for 776 non-invasive plant species found in China
(see Table S1). We then normalized our results for the position
index of each factor by the results of the non-invasive species. The
data on the 776 species was downloaded from GBIF (http://
www.gbif.org/) and was limited to all non-invasive species with at
least five observations in China and after 1980. We note that limit-
ing the same analysis to species with at least 20 observations
yielded similar results.

STAT IST ICAL ANALYSES

All statistical analyses were performed using Matlab version 7.14
(MathWorks Inc, Natick, MA, USA).

Results

For all study species, mean MAS (Table 2) was >1�5 km per
year. At least 75% (and up to 100%) of the observed MAS of
each species were >1 km per year. We did not find any spa-
tial or directional structure in the results. Analysis of good-
ness-of-fit between MAS distribution of each species and key
distribution functions (Gaussian, Exponential, Weibull,
Log-normal and WALD) allowed for rejection of the null
hypothesis of fit for all distribution functions and all species
(Anderson-Darling test, Table S2). The frequency distribution
of MAS values for all species combined has a unimodal
shape, with a peak around 2�2 km per year (Fig. 2; see
Fig. S3 for species-specific histograms).
To examine anemochory as a plausible dispersal mecha-

nism, we used a model based on extreme statistics (Nathan
et al. 2011a) to simulate the spread rate by extreme winds
(see Table S3). Even under extreme average wind speeds of
30 m s�1, which are over an order of magnitude higher than
the maximum annual mean anywhere in China in all anal-
ysed years (Guo, Xu & Hu 2011), simulated spread speeds

Table 2. Minimal arrival speed. The minimal arrival speed of the 17
study species. For all species, average MAS was over 1�5 km per
year. Over 75% of the observations of each species were over 1 km
per year, and for all but a single species, at least 10% of MAS was
over 5 km per year

Species

Minimal arrival speed (km per year)

Average SD Min Max
>1
(%)

>5
(%)

Ageratina adenophora 7�7 4�3 1�1 22�1 100 65
Ageratum conyzoides 2�4 2 0�2 9�9 75�8 10�9
Alternanthera
philoxeroides

5�8 5 0�4 25�5 95�3 41

Amaranthus retroflexus 3�1 2�7 0�2 18�3 88�4 13�2
Amaranthus spinosus 2�8 2 0�2 10�2 82�5 11�7
Amaranthus viridis 2�3 1�7 0�2 9�5 76�9 10
Ambrosia artemisiifolia 4�8 4�7 0�2 52�3 92�2 31�6
Aster subulatus 5�3 3 0�1 17�2 96�5 47�2
Chenopodium
ambrosioides

3�7 3�5 0�2 40 91�5 25�2

Conyza canadensis 1�6 1�1 0�1 6�5 66�9 1�5
Erigeron annuus 3�5 2�6 0�03 16�2 90�2 20�2
Eupatorium odoratum 3�8 2�3 0�3 14�1 95�1 22�5
Flaveria bidentis 9�9 8�6 1�2 66�2 100 73�1
Galinsoga parviflora 4�3 2�8 0�4 19�4 95 32�1
Lepidium virginicum 3�5 2�8 0�1 15�2 87�2 22�6
Phytolacca americana 3�6 2�9 0�3 32�1 92�6 18�4
Solanum rostratum 16�7 21 1�8 128�2 100 82�4
All species 3�9 4�2 0�1 128�2 88 24�7
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Fig. 2. Frequency distribution of minimal arrival speed for study spe-
cies. A log-scaled histogram of the combined observed minimal arri-
val speed values of all 17 study species. The data range between 0�1
to 128�2 km per year, with a peak around 2�2 km per year.
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were at least one order of magnitude lower than the
observed speeds.
Comparing the spatial distribution of the observations

against those of potentially influential factors (Fig. 3),
weighted by habitat suitability and with compensation for
sampling bias, we found significant bias towards human-
related factors (distances from rail stations, roads and settle-
ments, human footprint index and population size) in all
species except A. adenophora and S. rostratum. All species
but the aforementioned two were also strongly biased
(P < 0�001) towards low NDVI values. We found no signifi-
cant bias towards short distances from all rivers or only from
major rivers in any of the species. We note that if not using a
statistical correction for a number of tests, a significant trend
towards short distances from rivers is found in 15 of the 17
species. We ran the analyses without weighting for habitat
suitability and found similar results but with somewhat higher
significance levels; we also found similar results without com-
pensating for sampling bias, but the significance levels were
much higher. We found no effect of the introduction pathway
on MAS distribution.
To further examine the strong trend towards human-related

factors, we also assessed the correlation between the number
of private cars in possession of Chinese citizens (National
Bureau of Statistics of China, http://www.stats.gov.cn) and
the number of counties with invasive plants observations
(Fig. 4). The logarithmic model y = a + blog(x) fitted the
data well (R2 = 0�96, P < 0�001 for all species combined; R2

ranged from 0�91 to 0�99 for each species separately, each
with P < 0�001).

Discussion

Seventeen of China’s worst invasive plants spread over the
country extremely quickly (Table 2). For all species, at least
75% of the ‘new arrival’ observations suggested average min-
imal speeds of over 1 km per year, with the most extreme
rates ranging between 6�5 (Conyza canadensis) and 128�2
(Solanum rostratum) km per year. Such spread rates are more
than an order of magnitude faster than those predicted by any
of the study species suggested dispersal mechanisms, such as
wind (see Table S3), animals (Viana et al. 2013), rivers (Boe-
deltje et al. 2003) or even cars (Von der Lippe & Kowarik
2007; von der Lippe et al. 2013). Theoretically, dispersal by
migrating animals, most likely birds, could explain such vast
spread (Viana et al. 2016). Yet, given the lack of directional-
ity in spread pattern and the high frequency of LDD events in
all study species, we find it unlikely that zoochory, even by
migratory birds, plays a major role in the spread processes of
the study species. Contrasting the lack of support for classic
‘native’ dispersal vectors such as animals, water or wind, we
found pervasive evidence for strong effects of human activity.
For nearly all study species, first observations in a county
were significantly closer to potentially influencing factors
related to human-mediated dispersal mechanisms compared to
the null random expectations (Fig. 3). These first observations
were characterized by short distances from roads and

settlements, high population density, high human footprint
index and proximity to rail stations, even after compensating
for the sampling bias towards human accessible areas. Similar
conclusions were drawn for the fast invasive spread of the
Pinewood nematode (Bursaphelenchus xylophilus) throughout
China (Robinet et al. 2009), suggesting that human-mediated
invasion might be generalized across different life-forms and
taxonomic groups.
First observations were also characterized by low NDVI

values. We suggest two possible explanations for this finding.
First, regions with frequent human activity, with many roads
and settlements, are usually characterized by low NDVI val-
ues. Thus, the low NDVI values might indirectly reflect
human-mediated dispersal as well. Alternatively, most study
species are known to inhabit a broad array of habitats (Liu
et al. 2005; Qiu, Shalimu & Tan 2013), including low fertil-
ity soils and several other habitats that are unsuitable to most
other plants. Furthermore, this result might reflect higher
establishment success in areas with lower NDVI due to
reduced competition. Previous studies showed that invasive
plants are more likely to establish in regions with both high
(Gavier-Pizarro et al. 2010; Huang et al. 2012) or low NDVI
(Dukes & Mooney 1999), although such variation might be
attributed to the mismatch between the coarser spatiotemporal
scale of analysis and the relevant finer scale required for
assessing NDVI effects. This mismatch also occurs in our
study, impeding valid distinction between these two possible
explanations. More generally, habitat associations are proba-
bly better investigated through field experiments rather than
by analysing large-scale observational data, but this is beyond
the scope of this work.
The evidence we found for pervasive, human-mediated

spread of invasive plants corresponds well with the emerging
consensus on invasive spread (Nathan 2006; Nathan et al.
2008; Wilson et al. 2009). Our study strongly supports this
view due to the exceptionally large spatial scale, long time-
period and multiple species included in the analysis. These
merits, however, inherently hinder attempts to address the
ensuing question of which specific human-related factors are
responsible for this rapid spread. This important question
requires a data set that can break down the multicollinearity
of the highly correlated explanatory (human-related) variables.
This challenge might be accomplished, for example, by exam-
ining trends in a spatiotemporal resolution sufficient to tease
apart different human-related factors. This is inherently diffi-
cult to achieve at the large spatiotemporal scales covered in
our study, whereas studies at smaller scales might lead to dif-
ferent results reflecting specific features of a smaller area. For
example, our previous analysis of the spread rate of Ageratina
adenophora (Horvitz et al. 2014) revealed that rivers
accounted for much faster spread than roads, in contrast to
the current study results (Fig. 3). The area analysed in the
previous study was less than 8% of the area included in the
current study, and within this area, traffic was concentrated
on major roads that follow rivers, thus the effects of the two
vectors were difficult to tease apart. Furthermore, even the
strongest correlation we found, between the number of
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counties with observations of invasive species and the number
of private cars in possession of Chinese citizens (Fig. 4),
should not imply that cars are necessarily the main dispersal
vector of invasive plants in China. Other factors related to
China’s fast economical growth, such as urbanization or
freight traffic, are also expected to show an increase similar
to car possession. Altogether, these factors reflect the ultra-
fast urbanization process of China (Xu et al. 2016), suggest-
ing that large urban areas – with large volume of traffic going
in and out – might act as a key vertex in the spread process
of invasive plants, similar to the role of airports in epidemic
spread (Colizza et al. 2006).
The importance of LDD has already been highlighted in

early essays on dispersal and biogeography (Darwin 1859;
Higgins & Richardson 1999). Kot, Lewis & van den Driess-
che (1996) showed that classic reaction–diffusion models
using exponentially bounded (e.g. Gaussian) dispersal kernels
can drastically underestimate observed rates of spread,
whereas fat-tailed kernels (e.g. log-normal) adequately
account for fast and even accelerating spread (see also Hig-
gins & Richardson 1999). In fat-tailed dispersal kernels, the
very low probability of dispersal to long distances decays
slowly with increasing distance, and LDD events can be per-
ceived as stochastic draws of (the rare) large values from the
(fat) distribution tail. This implies tremendous variation in the

dispersal distances of individual LDD events, or in other
words, invasive spread through big and highly variable jumps,
extending over 4 orders of magnitude (Fig. 2). This pattern
was anticipated theoretically (Nathan 2006) but has rarely
been documented in previous studies of human-mediated
LDD, presumably because empirical studies are inherently
limited to (relatively) short distances and short periods (Wich-
mann et al. 2009; Taylor et al. 2012; von der Lippe et al.
2013). Furthermore, most theoretical works either highlighted
potential LDD mechanisms (Nathan et al. 2008; Wilson et al.
2009) and general spread patterns (Nathan et al. 2008; Wil-
son et al. 2009) or presented detailed models of spread pat-
terns (Lewis 1997) or particular dispersal mechanisms (e.g.
Nathan et al. 2011b). Yet, they become excessively compli-
cated and difficult to validate when attempting to link patterns
and mechanisms and to account for multiple dispersal vectors
(Nathan 2007). Common to most theoretical and empirical
studies is the basic assumption portraying invasive spread as
a spatially continuous process, characterized by the (very)
low probabilities of extreme LDD (or jump dispersal) events
at the dispersal kernel tail (Nathan et al. 2012). This basic
assumption prevails in both classic (Skellam 1951; Okubo
et al. 1989; Allen et al. 1991) and contemporary literature
(Adams et al. 2015; Uden et al. 2015; Teller, Zhang & Shea
2016). However, the findings of the current study suggest that

Fig. 3. Results of comparison between first arrival location and county distribution of several factors. Results of mean distribution of the 17 study
species in comparison to uniform (random) distribution of nine environmental features. For each county, each factor was checked to see where it falls
on its distribution throughout the county. Data were weighted by Maxent model results and observation bias was compensated for using the observa-
tions of non-invasive plant species distributions. Black dots represent the mean species value. Grey bars represent the 95% confidence bounds
expected from a uniform distribution. One, two or three asterisks under species name represent critical significance levels of 0�05, 0�01 and 0�001
respectively. Columns in ‘major rivers’ panel for species with less than five observations in counties containing a major river are left empty.
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the occurrence of such long jumps cannot be consistently esti-
mated based on a continuous fat-tailed dispersal kernel.
The exceptionally large scope of our data set and analysis

provided a unique opportunity to rigorously test the assump-
tion that fat-tailed dispersal kernels can properly represent
invasive spread driven by jump dispersal. Such a pattern is
evident in all 17 study species, which have rapidly expanded
their range within China by means of very long jumps of
highly variable lengths. However, the distribution of MAS
did not fit any of five probability density functions (dispersal
kernels) commonly used in the literature, including two expo-
nentially bounded and three fat-tailed ones (Table S2).
Because our analysis was (intentionally) biased to the tail of
the distribution – by examining first arrival to a new county
which is on average tens of kilometres from the nearest
neighbouring one (see Materials and methods) – we fitted the
data to truncated distributions restricted to values equal to or
higher than the minimal MAS found for each species.
Although the lack of fit to exponentially bounded kernels was
expected, we found that fat-tailed kernels poorly fit the data
as well. Hence, standard continuous distribution functions
commonly used in invasive spread models, including fat-
tailed ones that can well represent local establishment or inva-
sive spread in small areas such as islands, cannot properly
depict the stochastic human-mediated long jumps that charac-
terize the rapid invasive spread of plants.
In this study, we presented a new approach to study the

mechanisms responsible for rapid invasive spread of plants, a
widespread phenomenon observed world-wide over the last
decades (Py�sek & Hulme 2005). Our study provides pervasive
evidence that invasive plants can spread very rapidly, and that
human-mediated jump dispersal is the only reasonable explana-
tion for this phenomenon. We recommend further use of MAS
or similar metrics to explore rapid invasive spread and advo-
cate controlling for observational bias towards human accessi-
ble areas, as well as the use of the consistently increasing, free

online data sets in invasion biology research. Our study is one
of the very few using empirical data sets covering very large
scales to investigate invasive spread patterns (Chapman et al.
2016). The finding that commonly used fat-tailed dispersal ker-
nels cannot describe and predict invasive spread mediated by
human-mediated jump dispersal does not necessarily imply that
such patterns are inherently unpredictable and their underlying
mechanisms cannot be understood (Clark et al. 2001). Subse-
quent efforts should be allocated to elucidate the specific
human activities responsible for rapid invasive spread of plants
in China and elsewhere, providing the means to guide manage-
ment plans and mitigate the damage inflicted by invasive spe-
cies to global biodiversity and economy.
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